
Guess what? Here is a new tool that finds some
new guessing attacks

Ricardo Corin1, Sreekanth Malladi2, Jim Alves-Foss2, and Sandro Etalle1

1 Faculty of Computer Science, University of Twente,
P.O.Box 217, 7500AE Enschede,

The Netherlands. Fax - (31 53)-489-4590
{corin,etalle}@cs.utwente.nl

http://www.cs.utwente.nl/∼corin
2 Center for Secure and Dependable Systems, University of Idaho,

Moscow, ID - 83844, USA. Fax - (208)-885-9052
{msskanth,jimaf}@cs.uidaho.edu

http://www.cs.uidaho.edu/∼msskanth

Abstract. If a protocol is implemented using a poor password, then the
password can be guessed and verified from the messages in the protocol
run. This is termed as a guessing attack. Published design and analysis
efforts always lacked a general definition for guessing attacks. Further,
they never considered possible type-flaws in the protocol runs or us-
ing messages from other protocols. In this paper, we provide a simple
and general definition for guessing attacks. We explain how we imple-
mented our definition in a tool based on constraint solving. Finally, we
demonstrate some new guessing attacks that use type-flaws and multiple
protocols which we found using our tool.

1 Introduction

Guessing attacks on protocols implemented using poor passwords are well-known
[LGSN89,GLNS93]. As an example, consider the following message in a protocol:

a → s : {na}passwd(a,s)

(read as ‘a’ sends ‘s’ a nonce ‘na’ encrypted with the password ‘passwd(a, s)’).
An attacker can guess a password, decrypt {na}passwd(a,s) getting na′ out,

obtain na in another way (possibly from a different message) and compare na
and na′ to verify the guess. If the guess is incorrect, the attacker can try again. In
this paper we only consider this type of off-line guessing attacks, where guesses
are not used in direct communication with the server.

Past efforts to address guessing attacks in terms of design or analysis lack a
general definition for guessing attacks, in the sense that one definition captures
all guessing attacks and avoids case analysis. Further, they always assume that
the protocols will be implemented without type-flaws and without interaction
from other protocols. However, these assumptions have led to the development
of succesful attacks against published protocols.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Guess what? Here is a new tool that finds some new guessing attacks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Idaho,Center for Secure and Dependable Systems,PO Box
441008,Moscow,ID,83844-1008

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Ricardo Corin, Sreekanth Malladi, Jim Alves-Foss, and Sandro Etalle

A type-flaw occurs when a message of one type is received by a party, in-
terpreting it as a different type. For example, receiving an agent identity and
treating it as a nonce.

We use the term multiple protocols to mean two or more protocols having
different sets of messages. eg. SSH, SSL or EKE, IKE and so on, but not merely
two different runs of the same protocol.

Some design techniques that prevent attacks involving type-flaws and multi-
ple protocols on properties like secrecy and authentication have been reported
in the literature [HLS00,GT00]. However, if these techniques are used when a
protocol is using poor passwords, we have found that they may actually facilitate
a guessing attack (we elaborate more on this in section 4).

In this paper, we address the type flaw and multiprotocol issues of guessing
attacks. The main contributions are:

– A new simple and general definition for guessing attacks. This in turn helps in
designing a general approach to find guessing attacks. In particular, we have
extended the constraint solving technique of [MS01,CE02] to find guessing
attacks, using our new definition1;

– Demonstration of the effect of type-flaws and multiple protocols on guess-
ing attacks, through type-flaw guessing attacks and multi-protocol guessing
attacks [MAFM02].

The rest of this paper is organized as follows. In section 2 we formally define
guessing attacks and illustrate the definition using examples. In section 3 we
show how we implemented an analysis technique using this definition. In sec-
tion 4 we discuss how conventional techniques to prevent type-flaw attacks and
multi-protocol attacks actually facilitate a guessing attack. In section 5 we show
some examples of type-flaw and multi-protocol guessing attacks which can exist
when type-flaws and multiple protocols cannot be detected. We conclude with a
discussion of related work and future work.

2 Defining guessing attacks

Lowe analyzes protocols for guessing attacks in [Low02]. His definition goes,

A guessing attack consists of the attacker guessing a value g, and then
verifying that guess in some way. The verification will be by the intruder
using g to produce a value v, which we call the verifier ; the verifier will
demonstrate that the guess was correct, i.e. an incorrect guess would
not have led to this value. This verification can take a number of dif-
ferent forms: (1) the attacker knew v initially, or has seen v during the
protocol run; (2) the attacker produced v in two different ways; or (3)
v is an asymmetric key, and the attacker’s knows the inverse of v from
somewhere.

1 A demo of the implementation is at http://wwwes.cs.utwente.nl/24cqet/gu-

essing.html

Guess what? Here is a new tool that finds some new guessing attacks 3

Let us leave (3) aside for the moment. We can combine (1) and (2) as follows:
The attacker produced v in two ways, and at least one of these two ways was

not possible before using the guess.
Now, whether an attacker can produce v in two different ways can be deter-

mined by simply masking that occurrence of v with some fresh constant (say v′)
and see if he can produce v and v′ again. This observation leads to our following
new definition of guessing attacks.

Let ` be the (attacker’s) inference relation: T ` t means that the attacker is
able to produce the value t using his knowledge T (T is a set of terms). We use
the standard Dolev-Yao inference rules as the attacker capabilities [DY83]. Let
v be a subterm of a term in T and g denote a guess. Then, we say that:

Definition 1. g is verifiable wrt T and v is a verifier for g iff:

1. T ′ ∪ {g} ` v ∧ T ′ ∪ {g} ` v′; and
2. ¬(T ′ ` v ∧ T ′ ` v′).

where v′ is a fresh constant and T ′ is a set of terms obtained by replacing the
particular occurrence of v in T , with v′.

Below we illustrate our definition on some examples.

Example 2.1: Let T = {na, {na}pab}; (pab is passwd(a, b)). Let g be pab, and
pick the leftmost occurrence of na as the verifier (v). Then, T ′ = {v′, {na}pab}.
It is straightforward to check that T ′ ` v′, T ′ 6` na (satisfying condition 2 of
Definition 1), and T ′ ∪ {g} ` v′ and T ′ ∪ {g} ` na (satisfying condition 1 of
Definition 1). Hence, that occurrence of na is a verifier for g and there is a
guessing attack.

Example 2.2: Let T = {{na}pab, {na, nb}pab}. Again make g = pab and v = na
(in {na}pab). So, T ′ = {{v′}pab, {na, nb}pab}. Both na and v′ are not derivable
from T ′ (satisfying condition 2), while they are both derivable from T ′ ∪ {g}
(satisfying condition 1). Thus, that occurrence of na is a verifier for g and there
is an attack.

Example 2.3: Let T = {{na}pk(b), {na}pab}. Let g = pab, and pick v = {na}pk(b).
Then, T ′ = {v′, {na}pab}. Now, T ′ ` v′, T ′ 6` {na}pk(b) (satisfying condition 2),
and T ′ ∪ {g} ` v′ and T ′ ∪ {g} ` {na}pk(b) (satisfying condition 1). Hence,
{na}pk(b) is a verifier for g, and there is a guessing attack. However, consider
v = na (in {na}pab). T ′ ∪ {g} ` v′ but T ′ ∪ {g} 6` v (not satisfying condition 1).
Hence, the particular v cannot be a verifier and it was a wrong choice.

The definition also implicitly includes another special case of Lowe, where the
protocol itself gives {g}g to the attacker. In this case, we select v as g (inside the
encryption). After guessing, v and v′ can be obtained from {v′}g∪{g} (satisfying
condition 1), but not before guessing (satisfying condition 2).

4 Ricardo Corin, Sreekanth Malladi, Jim Alves-Foss, and Sandro Etalle

The only case in Lowe’s definition not captured by our definition is his con-
dition (3). However, this is really an implementation dependent attack. We in-
troduce some special predicates in our actual implementation of our definition,
and generalize such implementation dependent attacks.

3 Implementation

If the number of parties executing protocols on a network is finite, then the
question “Is an attack possible in this scenario?” can be answered using a simple
constraint satisfaction procedure. The idea is to first consider all possible message
interleavings of the finite number of participants. Now if there is an attack on a
particular interleaving, then the intruder must be able to send all participants
with the messages that they expect to receive. For this, he should be able to
synthesize those messages using his knowledge and actions. These are called
constraints. If the constraints are solvable, it means that the intruder can produce
those messages and there is indeed an attack on that interleaving. This process
is repeated for all the possible interleavings.

This technique of protocol analysis, called constraint solving, was first intro-
duced by Millen and Shmatikov [MS01]. It is a terminating, sound and complete
procedure and has been implemented in a tool called constraint solver. Unlike
previously developed tools for protocol analysis, the constraint solver is very easy
to use, available for free, simple (a three page Prolog program) and a natural
way of protocol analysis.

We used an improved version of the original constraint solver called Co-
ProVe [CE02]. Unlike the original constraint solving, CoProVe tries to construct
an attack scenario ‘on-the-fly’, by finding a corresponding execution sequence of
the agents’ events. This avoids the necessity to consider many ‘useless’ interleav-
ings, resulting in a much faster implementation. Moreover, the tool is capable of
finding attacks involving partial runs and has a monotonic behavior.

We extended CoProVe to find guessing attacks, by implementing Definition 1.
Let m : T represent a constraint stating that attacker should be able to derive
message m from a set of terms T . Now, in our notation, m : T is solvable iff
T ` m. Therefore, the implementation is straightforward: put the conditions in
Definition 1 in a constraint form as:

1. v : T ′ ∪ {g} ∧ v′ : T ′ ∪ {g} and
2. ¬(v : T ′ ∧ v′ : T ′).

As explained above, we first consider a scenario with finite number of partic-
ipants. We then ‘execute’ the scenario using constraint solving; for each possible
way of executing the scenario, we obtain a knowledge that. Using the two condi-
tions above, the knowledge can be tested for the existence of a guessing attack.

We also added to the implementation some new reduction rules that permit
operations like guessing secrets, Vernam encryption, and explicit use of secret
keys. In addition, we povided some new predicates, that can be specified in the
input to the solver:

Guess what? Here is a new tool that finds some new guessing attacks 5

1. keylookup(true/false), to turn on/off public-key lookup;
2. obtainable(t), to specify terms that the attacker knows, even before the pro-

tocol executes (for instance, from a file);
3. checkable(t), to specify terms that the attacker can immediately recognize

when he sees them (e.g. words in English). This predicate combined with
obtainable() allows us to take care of Lowe’s condition (3).

Similar predicates can be easily added to detect more such possible imple-
mentation dependent attacks. The implementation is a five-page Prolog program.
There is also an option to find only one or all the attacks on a protocol.

However, there are a couple of limitations to our implementation. Due to
the free algebra assumptions in the original constraint solver, our use of Vernam
encryption was restricted. It was modelled similar to symmetric key encryp-
tion, without associative and commutative properties (however, it appears that
this restriction is not needed anymore, thanks to a recent work of Millen and
Shmatikov 2). Also, protocols can use explicit secret keys only as a construction
operator (just like hash).

Results obtained with our tool were surprising and exciting. Apart from a
number of attacks on toy protocols and known attacks (including Lowe’s exam-
ples), we also found some new attacks on published protocols.

4 Type-flaw and Multi-protocol guessing attacks

As mentioned earlier, some techniques to prevent attacks involving type-flaws
and multiple protocols may actually facilitate a guessing attack. In [HLS00],
Heather et al. provide a method to prevent type-flaw attacks, by tagging the
message fields with their intended types. However, type-tagging should not be
implemented when the protocols are using poor passwords. To see why, consider
again the message {na}passwd(a,s) shown in the introduction. Now, an attacker
has to decrypt it with a guess, obtain na in another way and compare to verify the
guess. But if the message is typed, like {nonce, na}passwd(a,s), after decryption
with the guess, presence of the tag ‘nonce’ would itself verify the guess. He does
not even need to know na!

Guttman et al. proved that attacks involving multiple protocols can be
avoided if all the protocols are implemented with disjoint sets of encrypted
messages [GT00]. However, if disjoint encryption is implemented by inserting
‘protocol-identifiers’ into messages, then the identifier itself would reveal the
guess (as in the case of type-tagging). On the other hand, disjoint encryption
using disjoint key sets is an expensive requirement due to the high cost of certi-
fied keys. Hence, users are unlikely to follow it.

However, in the absence of any mechanisms to detect type-flaws and use of
multiple protocols, protocols may be vulnerable to new kinds of guessing attacks
called, type-flaw guessing attacks and multi-protocol guessing attacks [MAFM02].
We show examples for these in the next section.
2 Vitaly Shmatikov, private communication, Feb 2003.

6 Ricardo Corin, Sreekanth Malladi, Jim Alves-Foss, and Sandro Etalle

4.1 Examples

Example 4.1 Consider the following protocol:

Msg 1. a → b : {{k}pk(b), {{k}pk(b)}k}pab

Msg 2. b → a : {nb, {k2}k}pab

Msg 3. a → b : {nb}k2

We tested this protocol in our tool and found only one attack, involving a type-
flaw. During the on-line phase of the attack, the attacker performs the following
communication with a (we write I(x) when the attacker impersonates honest
agent x):

Msg 1. a → I(b) : {{k}pk(b), {{k}pk(b)}k}pab

Msg 2. I(b) → a : {{k}pk(b), {{k}pk(b)}k}pab

Msg 3. a → I(b) : {{k}pk(b)}{k}pk(b)

In message 2, attacker replays message 1 back to a.
Now the attacker moves to the off-line phase; the relevant events in the tool’s

output are3:

guesses:[pab], verifier: k * pk(b)
verification trace: sdec([k * pk(b),k * pk(b) + k] + pab),
split([k * pk(b),k * pk(b) + k]),sdec(k * pk(b) + k * pk(b))

Attack: The attacker guesses pab, decrypts the first message with the guess,
splits it, and takes the first part ({k}pk(b)) out of it. He can then decrypt the
third message with this to obtain it {k}pk(b) again, thereby verifying the guess.

Example 4.2 Lomas et al. presented the following protocol in [LGSN89] (say P1):

Msg 1. a → b : {c, n}pk(b)

Msg 2. b → a : {f(n)}pab

We tested P1 in our tool and found a simple attack 4:

Msg 1. I(a) → b : {c, n}pk(b)

Msg 2. b → I(a) : {f(n)}pab

The attack trace:

guesses:[k], verifier: n
verification trace: guess(k), sdec(n + k).

Attack: The attacker spoofs as b and sends message 1 by encrypting his own c, n
with b’s public key. After receiving message 2, he decrypts it with a guess. Since
f is known and invertible, he applies f−1 to f(n) and obtains n. If it matches
n sent in message 1, the guess was correct. (We also found a similar attack on

3 ‘*’ and ‘+’ indicate asymmetric and symmetric key encryption operators respectively.
4 We are grateful to Sarvar Patel for pointing out this possibility.

Guess what? Here is a new tool that finds some new guessing attacks 7

a slightly more complicated version of this protocol, presented in [GLNS93]. See
Appendix).

However, we also found an attack involving a type-flaw and multi-protocols on
P1. We changed P1 so that the first message is {n, c}pk(b) instead of {c, n}pk(b).

Msg 1. a → b : {n, c}pk(b)

Msg 2. b → a : {f(n)}pab

Call this P2. When P1 and P2 are combined, the scenario looks like:

Msg P1.1. a → b : {c, n}pk(b)

Msg P1.2. b → a : {f(n)}pab

Msg P2.1. I(a) → b : {c, n}pk(b)

Msg P2.2. b → I(a) : {f(c)}pab

The apparently inconsequential change in message 1 now leads to an attack:

guesses:[pab], verifier: [c,n] * pk(b)
verification trace: sdec(c + pab), sdec(n + pab), keylookup(pk(b)),
pair([c,n]), penc([c,n] * pk(b)).

Attack: Attacker can replay msg 1 of P1 in P2. After b sends msg 2 in P2,
attacker now has {f(n)}pab and {f(c)}pab. She can decrypt both to get f(n) and
f(c) and apply f−1 to get n and c. Lastly, she can construct message 1 in P1
or P2 with c, n and pk(b) to verify the guess.

Example 4.3 Consider another protocol presented by Lomas et al. in the same
paper (say, P3):

Msg 1. a → s : {a, b, na1, na2, ca, {ta}passwd(a)}pk(s)

Msg 2. s → b : a, b
Msg 3. b → s : {a, b, nb1, nb2, cb, {tb}passwd(b)}pk(s)

Msg 4. s → a : {na1, na2⊕ k}passwd(a)

Msg 5. s → b : {nb1, nb2⊕ k}passwd(b)

Msg 6. a → b : {ra}k

Msg 7. b → a : {f1(ra), rb}k

Msg 8. a → b : {f2(rb)}k

Here, ⊕ represents Vernam encryption (bitwise XOR).
We did not find any attacks on P3 in isolation. However, we mixed it with

P1 above and found an attack. The scenario looks like:

Msg P3.1. a → b : {a, b, na1, na2, ca, {ta}passwd(a)}pk(b)

Msg P1.1. I(a) → b : {a, b, na1, na2, ca, {ta}passwd(a)}pk(b)

Msg P1.2. b → I(a) : {b, na1, na2, ca, {ta}passwd(a)}pab

(we take f(n) = n, since f is arbitrary).

Attack: Msg 1 in P3 is replayed to b in P1. If b in P1 is the server in P3, b would
send msg 2 in P1. Attacker can then decrypt it with the guess of passwd(a),

8 Ricardo Corin, Sreekanth Malladi, Jim Alves-Foss, and Sandro Etalle

obtain ca, na1, na2, {ta}passwd(a) and construct msg 1 of P3 again to verify the
guess. Other similar attacks on P3 can be found in the on-line demo.

An important point about type-flaw and multi-protocol guessing attacks is
that, protocol runs need not be contemporaneous (i.e need not be executing
parallely). Hence, they seem much more powerful than previously known type-
flaw and multi-protocol attacks [AF98].

An interesting question is: “Are there attacks on these protocols without
type-flaws and without using multiple protocols?”. On some protocols that we
tested, the guessing attacks we found always required a type-flaw or multiple
protocols or both.

5 Conclusion

In this paper, we presented a new simple definition of guessing attacks and
implemented it in a tool based on constraint solving. We also demonstrated
some type-flaw and multi-protocol guessing attacks.

5.1 Related Work

Our technique and implementation have a number of advantages over Lowe’s
method.

1. It is a simple, yet general definition of guessing attacks avoiding a case
analysis. This would be helpful in designing attack-prevention strategies;

2. In our definition, the attacker need not keep track of his derivations to en-
sure different ways of deriving the same term. In contrast, Lowe’s definition
implies that the attacker must do so;

3. Because we mark verifiers first and do a backward search, we do not “create”
incorrect verifiers while finding the verifiers in different ways. Thus, we get
rid of the tedious “undoes” relation in Lowe’s method;

4. Due to the above three facts, our implementation turns out to be very fast;
5. It is easy to model multiple protocols in our tool and it implicitly looks for

type-flaws. Lowe did not discuss the use of multiple protocols anywhere in
his paper. And although Lowe’s technique may find guessing attacks involv-
ing type-flaws, he does not mention it anywhere in his theory or examples.
Besides, it is difficult to model type-flaws in Casper [Low98]. Further, Casper
does not allow varying message lengths in a type-flaw;

6. Equipped with the obtainable() and checkable() predicates, the implementa-
tion allows to find more varieties of attacks than Lowe’s.

5.2 Future work

Our definition of guessing attacks is good only when standard Dolev-Yao attacker
inference rules are used. Lowe’s definition seems more general in this sense,

Guess what? Here is a new tool that finds some new guessing attacks 9

because it is independent of the attacker’s inference rules. Also, we consider
only subterms of the attacker’s knowledge as potential verifiers, since we believe
that any verifier with standard inference rules is always a subterm of the initial
attacker knowledge. In contrast, Lowe considers terms that are not necessarily
subterms of the initial attacker knowledge, as possible verifiers.

Consider, for instance, the inference rule {{m,n}k → {m}k}, and the knowl-
edge T = {{{m,n1}k}passwd(a,b), {{m,n2}k}passwd(a,b)}. Now {m}k can be a
verifier since it can be obtained in two different ways after guessing passwd(a, b) 5.
However, since {m}k is not a subterm and since the inference rule is not in the
standard set, it cannot be found using our definition. In contrast, it can be found
using Lowe’s definition. It would be interesting to extend our definition to make
it equivalent to Lowe’s so that it is independent of the inference rules, at the
same time keeping it simple and general. We believe that our definition is equiv-
alent to Lowe’s when the standard inference rules are adopted. We are currently
investigating this point.

It is our conjecture that having type-tags or protocol identifiers only inside
terms encrypted with strong keys would prevent all type-flaw and multi-protocol
guessing attacks respectively (such tagging seems to work atleast for the exam-
ples shown in this paper). Proving this conjecture formally appears to be a
challenging task.

Patel presents some implementation dependent attacks on versions of EKE
and other protocols [Pat97]. Some of them use redundancies such as typing inside
encrypted messages. However, in all those cases, the redundancies only aid those
attacks but do not form the root cause. Patel points out some solutions such as
making type tags longer as possible ways of avoiding those attacks. Formaliza-
tion and implementation issues regarding the use of redundancies in encrypted
messages are important, but little work has been done in that direction.

There are a number of facets to password guessing attacks. Lot of effort seems
to have been put into using ‘provable security’ [KOY01] for analysis and some
effort into studying the implementation dependent issues. However, application
of formal methods, which has been extensively used for cryptographic protocol
analysis, was not used in a great deal for password protocols. This is probably
due to the complicated nature of guessing attacks, whose analysis involves com-
plications similar to combining cryptanalytical and abstract protocol analysis.

Acknowledgments. We are grateful to the anonymous referees of this paper whose
comments helped us correct some critical errors. This research was funded in part
by (i) DARPA under grant F30602-02-1-0178 and (ii) LicenseScript project.

References

[AF98] J. Alves-Foss. Multi-protocol attacks and the public key infrastructure. In
Proc. National Information Systems Security Conference, pages 566–576,
October 1998.

5 We are grateful to an anonymous reviewer for pointing this out to us.

10 Ricardo Corin, Sreekanth Malladi, Jim Alves-Foss, and Sandro Etalle

[CE02] R. Corin and S. Etalle. An improved constraint-based system for the veri-
fication of security protocols. 9th Int. Static Analysis Symp. (SAS), LNCS
2477:326–341, September 2002.

[DY83] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2), 1983.

[GLNS93] L. Gong, T. M. Lomas, R. M. Needham, and J. H. Saltzer. Protecting
poorly chosen secrets from guessing attacks. IEEE Journal on Selected
Areas in Communications, 11(5):648–656, 1993.

[GT00] J. D. Guttman and F. J. Thayer. Protocol independence through disjoint
encryption. 13th IEEE Computer Security Foundations Workshop, pages
24–34, July 2000.

[HLS00] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks
on security protocols. In Proceedings, 13th Computer Security Foundations
Workshop. IEEE Computer Society Press, July 2000.

[KOY01] J. Katz, R. Ostrovsky, and M Yung. Practical password-authenticated key
exchange provably secure under standard assumptions. In Advanced in
Cryptology-EUROCRYPT, 2001.

[LGSN89] T. M. Lomas, L. Gong, J. H. Saltzer, and R. M. Needham. Reducing risks
from poorly chosen keys. Operating Systems Review, 23(5):14–18, 1989.

[Low98] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal
of Computer Security, 6:53–84, 1998.

[Low02] G. Lowe. Analyzing protocols subject to guessing attacks. Workshop on
Issues in the Theory of Security (WITS’02), January 2002.

[MAFM02] S. Malladi, J. Alves-Foss, and S. Malladi. What are multi-protocol guess-
ing attacks and how to prevent them. Proceedings of Eleventh IEEE
Workshop on Enabling Technologies: Infrastructure for Collaborative En-
terprises, WETICE 2002, June 2002.

[MS01] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. In ACM Conference on Computer and Com-
munication Security, volume Proc. 2001, pages 166–175. ACM press, 2001.

[Pat97] S. Patel. Number theoretic attacks on secure password schemes. In Proc. of
the IEEE Symposium on Research in Security and Privacy, 236–247, 1997.

Appendix 1. Attack on another version of P1

We presented a previously unpublished attack on P1 in Section 4.1 (Exam-
ple 4.2). Here we present a similar attack on a slightly modified version of P1
presented in [GLNS93]. The protocol is described as follows,

Msg 1. a → b : {c1, c2, n}pk(b)

Msg 2. b → a : {c2⊕ f(n)}pab

The attack scenario,

Msg 1. I(a) → b : {c1, c2, n}pk(b)

Msg 2. b → I(a) : {c2⊕ f(n)}pab

Attack:The attacker spoofs as b and sends message 1 by encrypting his own
c1, c2, n with b’s public key. After receiving message 2, he constructs {c2⊕ n}g

with a guess, since he knows c2 and n. A match with message 2 verifies the guess.

